高等学校 理科 化学 学習指導案

大阪府立豊中高等学校 指導者

1. 日 時 平成26年6月10日(火)第6時限 (14:10~15:00)

2. 場 所 化学実験室

3. 学年•組 第3学年4組理科(27名)

4. 単元名 第3編 化学反応の速さと平衡 3章 水溶液中の化学平衡 溶解平衡

5. 単元の目標 水溶液中の化学平衡の関係を理解する

6. 教材観 これまでに学習した化学平衡の関係を溶解平衡にも適用し、実験を通して

沈殿生成と溶解度積の関係を探究し、溶解平衡・沈殿滴定への導入を行う。

1. 生徒観 (略)

8. 指導観・次回以降の授業の導入として、次の①②を行い、溶解平衡の理解の助けとする。

- ①演示実験を通して難溶性塩もわずかに溶解し、溶解平衡が成り立つことに気づかせる。
- ②沈殿滴定(モール法)の滴定終了時に成立している溶解平衡の関係に 気づかせる。
- ・実験結果について詳細に記録することを心がけさせる。
- ・グループで実験結果の洞察を行い、相互に現象についての理解を深め合う ことで、個々の理解不足部分を補完しあう。

9. 単元の評価規準

A 関心·意欲·態度	B 思考·判断·表現	C 技能	D 知識·理解
・弱酸・弱塩基の電	・弱酸・弱塩基の電	・酢酸の電離平衡	・弱酸・弱塩基の電
離平衡、水の電離	離平衡や水溶液の	定数の測定、緩衝	離平衡と電離度,
平衡と水溶液の pH	pH 等を電離平衡定	作用の確認、弱酸	水のイオン積と水
について関心をも	数と電離度の関	・弱塩基の滴定曲	溶液の pH や弱酸・
ち, その意味や平	係,水のイオン積	線の作成を通じて、	弱塩基からなる塩
衡状態の表し方に	等を用いて考察で	水溶液中の化学平	の加水分解、緩衝
ついて意欲的に探	きる。	衡について調べ,	作用と pH 変動, 難
究しようとする。	・弱酸・弱塩基から	その結果を考察し	溶性塩の溶解平衡
・塩の加水分解,	なる塩の水溶液の	的確に表現できる。	について理解・習
緩衝液と pH , 難溶	性質や加水分解,	・難溶性塩の微少	得し、平衡移動・溶
性塩の溶解平衡に	緩衝作用,難溶性	な濃度における溶	解度積・共通イオン
ついて関心をもち,	塩の溶解平衡等に	解平衡を観察し、	効果等の考え方を
各種平衡定数の関	ついて平衡定数・	その結果を溶解度	個別具体的な反応
係や溶解度積につ	溶解度積・ルシャト	積の大小関係を用	にあてはめる基本
いて意欲的に探究	リエの原理と共通	いて考察し的確に	的な知識を身に付
しようとする。	イオン効果等の考	表現できる。	けている。
	え方を用いて説明		
	し、考察できる。		

10. 単元の指導と評価の計画(全10時間)

学習内容	主な評価規準【観点】
水の電離平衡とpH	弱酸・弱塩基のpH等を電離度の関係、水のイオ
	ン積を用いて考察できる。【B】
1 価の弱酸・弱塩基の電	弱酸・弱塩基の電離定数と電離度、pH等の関
離平衡と電離定数	係を理解し、pHを計算できる。【C・D】
2価の弱酸のpH	水溶液中に存在する各イオンの濃度について,
	理解し、説明できる。【B・D】
塩の加水分解	塩の水溶液についての平衡の関係を理解でき
	る。【B·D】
緩衝液とpH	緩衝液の性質を観察・理解し、緩衝液のpHを
	求めることができる。【B・C・D】
滴定曲線のpH変化	弱酸とその塩の混合溶液、弱塩基とその塩の混
	合溶液の[H ⁺]と電離定数の関係を理解できる
	[A·B·C]
観察:実験 溶解平衡導入	科学的な態度で観察、実験、言語活動などを
	行い、意欲的に溶解平衡について考えようと
	する。【A・B・C】
溶解平衡	難溶性の塩の溶解平衡や沈殿滴定(モール法)の
	原理について理解している。【B·D】
溶解平衡	電離平衡の考えを個別具体的な反応にあては
電離平衡補足	め,説明できる。【B・D】
電離平衡演習	滴定曲線のpH変化を理解できる。【C】
	水の電離平衡とpH 1 価の弱酸・弱塩基の電離平衡と電離定数 2価の弱酸のpH 塩の加水分解 緩衝液とpH 滴定曲線のpH変化 観察・実験 溶解平衡導入 溶解平衡 電離平衡補足

11. 本時の展開

(1) 本時の目標

- ・ 難溶性塩の微少な濃度における溶解平衡を観察し、その結果を溶解度積の大小 関係を用いて考察し的確に表現できようにする。
- 実験記録について詳細にすることを心がけさせる。
- ・ 論理的に考えた内容を、分かりやすくまとめ、筋道立てて表現する能力を育て、廃 液の扱いなど、環境についての配慮も意識させる。

(2) 本時の評価規準

- 意欲的に実験に取り組むことができる。
- 溶解平衡を観察し、その結果を溶解度積の大小関係を用いて考察することができる。
- グループで探究活動を行い、相互に理解を深め合うことができる。
- 考えた内容を正しく伝えられる。

(3) 本時で扱う教材

実験プリント

(4) 本時の学習過程

(4)	本時の字音適程		
時間	学習内容・学習活動	指導上の留意点	評価規準 (評価方法)
15 分	演示実験1	(導入の答えが出ているた	
	これまでに学習した	め、生徒実験プリントは生徒	今日のテーマを知り、意
	化学平衡の知識を用	実験の直前に配る。)	欲的に取り組む姿勢があ
導	いて飽和溶液中に溶		るか。
入	解平衡が成立してい	共通イオン効果については	【関心・意欲・態度】
	ることを理解させる。	次回の授業で行う。	(説明時の様子の観察)
	・イオンの濃度の積		
	が Ksp より大きいと	・塩化水素の実験室での製	演示実験をきちんと観察
	固体(沈殿)が生成す	法を復習する。	し,発問に対して,意欲的
	ることに気づかせる。		に考え、答えようとしてい
		・終了後は、発生器を氷水	るか。
	演示実験2	につけて反応を抑え, 実験	【思考·判断·表現】
	これまで沈殿と表現	器具はドラフトに置く。	
	していた物質もわず		溶解度積の意味が理解で
	かに溶けていること	・演示実験2は、教材提示カ	きているか。
	を確認する。	メラを使用する。	【知識・理解】
25 分	生徒実験	(生徒実験用のプリントを配	・班のメンバーと協力しな
		付する。)	がら、積極的に授業に参
	優先的に沈殿する		加しているか。
展		・班で相談しながら考えさせ	【関心・意欲・態度】
開	気づかせる。	る。	
			・説明を聞き、操作の意味
		・相互に記録の仕方を点検	
		し,詳細な記録を心がけさ	
	いから、沈殿しやす	せる。	【技能】
	い順番があることを		
	気づかせる。	・実験結果からわかることを	
		班で考えさせ、全員が正解	
		に近づくようにする。	【技能】
1.5.1	↑ → ↑ L LO ¬+	· 本 中 40 - 7 - 11 - 12 - 12 - 12 - 12 - 12 - 12	法即法力。压如 珍亚加
10分	ビデオ視聴	滴定終了時における銀イオ	
	法即法点 /一	ンの濃度、塩化物イオンの	-
ま、	沈殿滴定(モール法)	濃度,クロム酸イオンの濃度の間なれ来るよい。	【知識・理解】
<u>ك</u>	の原理を説明する。	度の関係を考えさせる。	
め		十日の中央 珍地科寺 400	・自ら考察し、自分の意見
		本日の内容が教科書p180~	
		p183であることを知らせ、自	
		宅で感想を書き、プリントを	【思考·判断·表現】 │
		完成することを宿題とする。	

演示実験 溶解平衡 (溶解度積)

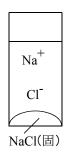
[目的]

溶解平衡について考える。

[準備]

器具: ふたまた試験管, ろうと(2), ビーカー(300mL × 2), 展開瓶, ビニール管付きシリコーンゴム栓, シリコーンゴム栓, 試験管, 試験管立

(生徒実験) シャーレ(2) プラ容器 ろ紙 1/4


薬品: NaCl(結晶), 飽和食塩水, 濃硫酸, 湯, 氷水, 0.1mol/LPb(NO₃)₂aq1.0mL 次の薬品は点眼瓶で用意する

塩化カリウム水溶液(0.1mol/L KClaq), ヨウ化化カリウム水溶液(0.1mol/L KIaq), ニクロム酸カリウム水溶液(0.1mol/L K₂CrO₄aq), 硝酸銀水溶液(0.1mol/L AgNO₃aq)

[演示実験1]

① 飽和食塩水を作る

飽和食塩水の中では 溶解平衡 が成立している。 溶解平衡 $NaCl(固) + aq \rightleftharpoons Na^+ + Cl^-$

K=

② 飽和食塩水に塩化水素を吹き込むとどのような現象がみられるか?

予想()			
結果			NaCl	
[Na⁺][Cl⁻] の値がKspより(固体(沈殿)が生成する。)	濃硫酸飽和食塩水湯	いと

「演示実験2]

- ① 0.1mol/LPb(NO₃)2aq1.0mL と NaClaq(飽和 5.0mol/L 以上)を混合し、PbCl₂ の沈殿をつくる。PbCl₂ の色
- ② ①のろ液を取り、0.1mol/L KIaqを加える。結果

化学式

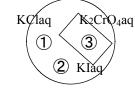
(参考) 溶解度(20 ℃) PbI₂(黄) 1.4 × 10⁻³ mol/L AgCl(白) 1.3 × 10⁻⁵ mol/L PbCl₂(白) 0.36 mol/L

年 組 番氏名

2種以上の沈殿の と 溶解度積 溶解度

- 溶解度積と溶解度との関係を確認しておこう
 - 例 AgCl(白) 溶解度 a mol/L とすると、AgClの溶解度積 KspAgClは

AgCl(固) + aq Ag^+ C1-単位 mol/L 固体 a 溶解 -*a* +a+a平 衡 0 а а

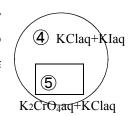

 $KspAgCl = [Ag^+][Cl^-] =$

[生徒実験]注意;廃液を増やさないために、滴下量を守ること。

11. 右図のように、シャーレ①に KClaq、②に KIaq、③に K2CrO4aq を1滴 ずつ滴下する。K2CrO4aq はプラ容器に入れる。

水溶液の色① KClaq, ② KIaq,

- 3 K₂CrO₄aq



12. ①②③の各液滴に、AgNO3agを1滴ずつ加える。

(2) 結果①

各液滴内で水の電離平衡以外に成立する平衡関係

- (1)
- 2
- 3
- 13. 別のシャーレを用意し、④に、 Klaq を 1 滴, シャーレ ⑤に K2CrO4aq を 1 滴滴下し、④、⑤に KClaq を 1 滴ずつ ④に Cl-と I-の混合液, ⑤に Cl-と CrO42-の混合液を作

のプラ容器 滴下して,

る。

14. ④, ⑤に AgNO3aq を 1 滴ずつ加える。

結果 ④ Cl-と I- の混合液 + AgNO3aq,

⑤ Cl⁻と CrO₄²⁻の混合液 + AgNO3aq

$() \vdash \rightleftarrows , \rightarrow ,$	= , > , <	のいずれかを	と入れよ。	
④ AgI(固) () Ag ⁺ AgCl(固) () Ag ⁺		Ksp ₋ (
⑤ AgCl(固)() A Ag2CrO4(固)() 2	_	Kspa (_	
☆上記の結果から、沈殿しやすい <	(溶解度が小さい)順 <	を記せ。		
15 ③(化学式と色 さらに1滴滴下する。 結果)に KClaq を 1:	滴 滴下して変化	を観察し、
(③の液滴の上からろ紙を置 [沈殿滴定(モール法)] 動画 水溶液中の塩化物イオン濃度 このとき、クロム酸カリウム水溶 滴定終了時までに加えた ☆終点はクロム酸銀の赤褐色の 滴定終了時に水溶液中で成立	教科書 p129 p183 を濃度既知の硝酸銀 液を指示薬として低 : AgNO3の物質量=)沈殿が溶けずに残	跟水溶液によっ 使用する。 Cl⁻の物質量 ;る(薄い赤にな	て滴定する。 となる。 る) 時である。	
[考察] 塩化銀, ヨウ化銀の溶解度積 KspAgCl = [Ag ⁺][Cl ⁻] = 1.8 × 10 塩化銀の沈殿にヨウ化カリウ ()に適語または化学式を入れる ヨウ化銀の(ア が溶液中に残存する(イ そのため、[Ag ⁺]がより小さく ため、塩化銀の白色沈殿は(-10 (mol/l) ² , KspAgI = ム水溶液を加えると)は塩化銀の(7)と反応し なり, AgCl ⇌ Ag	= [Ag ⁺][I ⁻] = 2.i こどのような変化 マ て(ウ	とがみられるか。)より小さいので)の黄色沈殿が	

☆ ④,⑤における関係を班で考える。

感想は裏に 実験日

組 番 氏名

3 年